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The structure of the intense-vorticity regions is studied in numerically simulated 
homogeneous, isotropic, equilibrium turbulent flow fields at four different Reynolds 
numbers, in the range Re, = 35-170. In accordance with previous investigators this 
vorticity is found to be organized in coherent, cylindrical or ribbon-like, vortices 
(‘worms’). A statistical study suggests that they are simply especially intense features 
of the background, O(o’), vorticity. Their radii scale with the Kolmogorov microscale 
and their lengths with the integral scale of the flow. An interesting observation is that 
the Reynolds number y/v, based on the circulation of the intense vortices, increases 
monotonically with ReA, raising the question of the stability of the structures in the 
limit of Re, --z co. Conversely, the average rate of stretching of these vortices increases 
only slowly with their peak vorticity, suggesting that self-stretching is not important in 
their evolution. One- and two-dimensional statistics of vorticity and strain are 
presented; they are non-Gaussian and the behaviour of their tails depends strongly on 
the Reynolds number. There is no evidence of convergence to a limiting distribution 
in this range of Re,, even though the energy spectra and the energy dissipation rate 
show good asymptotic properties in the higher-Reynolds-number cases. Evidence is 
presented to show that worms are natural features of the flow and that they do not 
depend on the particular forcing scheme. 

1. Introduction 
It is generally agreed that homogeneous isotropic turbulence is approximately 

described by the Kolmogorov (1941) cascade theory (see, for example, Landau & 
Lifshitz 1959, pp. 116-123). In particular the k-g energy spectrum, and the almost 
universal scaling of the dissipation range in Kolmogorov variables, stand as two of the 
most successful predictions in fluid mechanics. It has aiso been known for a long time 
that this description is incomplete. It was first shown by Batchelor & Townsend (1949) 
that the statistics of the velocity derivatives are incompatible with an uncorrelated 
random behaviour of the velocity field at scales comparable to the Kolmogorov 
dissipation limit. This intermittent behaviour becomes more pronounced as the 
Reynolds number increases, and flatness factors - 50 have been reported in the 
atmospheric boundary layer (Van Atta & Antonia 1980), suggesting that any theory 
based on uncorrelated Gaussian field might be seriously deficient in the limit Re + 00. 

It has tp be stressed that, even in these cases, the energy spectrum remains self-similar 
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and agrees reasonably well with Kolmogorov’s predictions. Energy, and even energy 
transfer, are large-scale or inertial-range phenomena, and do not seem to be strongly 
affected by intermittency, while the higher moments are associated with rare, intense, 
small-scale events which do not influence the low-order statistics. 

It is not clear apriori whether this state of affairs will persist at large Re. Moreover, 
since experiments at Reynolds numbers much higher than those presently available 
from geophysical flows cannot be expected in the near future, some sort of theoretical 
understanding of the intermittent small scales is clearly desirable. In this paper we 
present new data from numerical isotropic homogeneous turbulence at several 
Reynolds numbers. Even though numerical constraints restrict our experiments to 
Re, d 200, it may be expected that the exceptional level of detail that can be derived 
from numerical simulations might help in the theoretical study of the phenomena. 

It was discovered recently that strong coherent elongated vortices (‘worms’) are 
present among the small scales of many turbulent flow (Siggia 1981; Kerr 1985; 
Hosokawa & Yamamoto 1990; She, Jackson & Orszag 1990; Ruetsch & Maxey 1991 ; 
Vincent & Meneguzzi 1991; Douady, Couder & Brachet 1991), and this discovery 
generated considerable excitement in the turbulence community. One reason for this 
interest is that, being strong and therefore presumably decoupled from the influence of 
other flow components, the behaviour of the worms should be relatively easy to 
understand. Should these vortices be found to form an important part of the 
turbulence phenomenon, their relative simplicity would give us a tool for the analysis 
of at least some part of the flow. Failing that, if it could be shown that they are nothing 
but extreme cases of a more general population of weaker vorticity structures, it might 
still be true that their study contains some clues to the behaviour of those background 
vortices, which in turn would constitute an important part of the flow. Even if none of 
these possibilities turns out to be true, the strong vortices are still relatively simple 
objects submerged in a turbulent flow, and they may be used as probes for the flow 
structure. 

We will show below that, of these three possibilities, the second seems to be the 
correct one. In terms of integrated quantities, the strong structures constitute a 
negligible part of homogeneous isotropic turbulent flows, although they are made 
conspicuous in flow visualizations by their locally high intensities. Moreover their 
statistical properties are generally similar to those of the background vorticity, and 
they seem to be just intense realizations of the latter. On the other hand, since they are 
easy to identify and relatively few in number for any given simulation, their behaviour 
can be studied easily, and can be extrapolated to a description of the behaviour of the 
background. 

The next section discusses the numerical set-up and the general characterization of 
the flow fields. The univariate probability distributions of the velocity gradients are 
presented next, with especial emphasis on the intense region. The geometric structure 
of those regions is also discussed in that section. Section 4 contains some experiments 
on truncated fields in which the intense regions have been either isolated or discarded. 
The dynamics of worm formation are explored in $5 by means of two-dimensional 
joint probability density functions of various quantities, and by direct measurement of 
their geometric scaling properties, as a function of Re,. Finally, the results are 
discussed and some conclusions are offered. 
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Line Re, N L L/h  L/T eL/uf3 w’T t / T  
35.1 64 1.97 2.55 30 1.09 9.9 12.8 

...... 61.1 128 1.76 3.34 52 0.82 12.9 5.3 
_-- 94.1 256 1.37 4.39 84 0.70 17.0 7.6 

168.1 512 1.65 7.77 198 0.69 30.1 5.9 
TABLE 1. Numerical and flow parameters for the four basic cases analysed in this paper. t / T  is 

the total run time in eddy turnover units. Line types are used consistently in the figures. 

~ 

2. The numerical experiments 
Our observations are made on direct numerical simulations of isotropic homo- 

geneous turbulence in triply periodic boxes at four different Reynolds numbers, 
ranging from Re, = 35 to 170. It is surprising that we are able to find similarity laws 
spanning the whole range of Reynolds numbers, and that even the lowest-Re, flow 
seems to be essentially turbulent. This gives us some confidence that our observations 
may represent asymptotic trends for high-Reynolds-number turbulence. 

The numerical method is fully spectral, using primitive variables u, p ,  with dealiasing 
achieved by spherical wave-space truncation and phase shifting (Canuto et al. 1987). 
The resolution N,  given in table 1, reflects the number of real Fourier modes in each 
direction before dealiasing. The time-stepping procedure is a second-order Runge- 
Kutta one for the nonlinear terms and an analytic integrating factor for the viscous 
ones. The time step is automatically controlled to satisfy the numerical stability 
condition. The Fourier expansion functions are exp ( f ik, x,), kj = 0,1, . . . , K = $V, so 
that the length of the box side is always 2 ~ .  Unless stated otherwise, all experiments are 
forced to achieve a statistically steady state. Forcing is achieved by introducing a 
negative viscosity coefficient for all the modes with wavenumbers k = Ikl < 2.5. The 
magnitude of the negative viscosity is adjusted every few time steps so as to keep the 
product Krj constant, where 7 = (v3/e)3 is the Kolmogorov scale. This forcing is 
arbitrary, as are most other ways of forcing turbulence, but it has the advantage of 
fixing automatically the numerical resolution of the scheme, and is therefore very 
convenient when a given simulation cannot be repeated many times, as is the case with 
our larger grids. Some test comparisons with other forcing methods showed no 
apparent differences in the results. 

The instantaneous energy dissipation rate, E ,  is computed in terms of the three- 
dimensional energy spectrum E(k), as 

6 = VW“ = 2v k2E(k)dk. 1: 
Other scales used in this paper are the r.m.s. velocity, defined by 

the integral scale, 

L = ?.- 1: k-lE(k) dk, 2ur2 

and the Taylor microscale, defined by h2 = 1 5 ~ u ’ ~ / ~ .  The microscale Reynolds number 
is defined as Re, = u’h/v, and the large-eddy turnover times as T = L/u’ (Batchelor 
1953). 
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Table 1 summarizes the characteristics of the different runs. Each run was continued 
sufficiently long for the instantaneous spectra and other integral characteristics to 
become statistically steady. This typically took a few large-eddy times, which may not 
be long enough to guarantee absolute statistical steadiness for the large scales, but 
which should be enough for the small scales to reach equilibrium. 

The calculations are fairly time consuming. Each eddy turnover time in the 2563 
computation took approximately 24 hours of computing time in a 128-node Intel 
hypercube (- 1.5 Gflops). The 5123 calculation was carried out in the 512-node 
Caltech Delta machine and took approximately three times longer per turnover time 
(- 4 Gflops). In most cases, the long runs needed to achieve equilibrium were carried 
out at lower resolution, which was increased to its final value to accumulate the 
statistics. The time that it took for the small scales to attain equilibrium at the new 
resolution was quite short, and no significant change in the large-scale properties of the 
flow were observed during that process. The Re, = 94 field was run for 2T at full 
resolution. The Re, = 168 was run only for 0.3T. 

The quantities in table 1, and the spectra in the following pages, are averages over 
whole flow fields and over periods of time that vary between 0.25 and 6 large-eddy 
turnover times. The shorter averaging times correspond to the highest Reynolds 
numbers. In particular the 5123 simulation at Re, *= 170 could only be studied for a few 
flow fields, closely spaced in time, but its statistics were checked, whenever possible, 
against longer simulations at 2563 resolution. The histograms presented later in the 
paper are spatial statistics averaged over several (5 to lo), reasonably spaced, moments 
in time. The 5123 simulation is again the exception, with only two field separated by 
less than 0.1 turnover time. The temporal variation of the spectra, when normalized to 
their instantaneous Kolmogorov scalings, was less than 1 YO, but larger variations were 
observed in the absolute values of the dissipation (- l0Y0) and of the total energy 
(- 5 YO), with a mean oscillation period of roughly 2 turnover times. 

Large deviations among instantaneous realizations were also observed in the 
extreme tails of the histograms, with probabilities below changing by factors of up 
to 2. These deviations were specially noticeable in the low-Reynolds-number cases, and 
lasted for substantial fractions of an eddy turnover time. In some cases they could be 
traced to the appearance and survival of a particularly strong structure. Even in the 
high-Re, simulations, in which the larger number of small structures results in 
smoother statistics, this effect was present to some extent, and should be borne in mind 
when interpreting our observations. 

Note that the dimensionless energy dissipation eL/uf3 decays slowly with increasing 
Re,, but stabilizes around 0.70 in the last two cases. This is consistent with the 
behaviour observed by Sreenivasan (1984) in a compilation of data from grid 
turbulence, in which the dissipation stabilizes above approximately Re, > 60. His 
asymptotic value of the dissipation, EL/U'~  x 1, is different from ours, but this is not 
surprising since the integral scale is dominated by the large eddies, which are 
presumably different in the two cases. 

The statistics of the small-scale intense regions are sensitive to the numerical 
resolution. After some experimentation, it was found that Kv = 1 was the absolute 
minimum needed for convergence of the velocity gradient histograms, and that 
Kq "N 2 was very desirable. We have maintained this latter resolution uniformly. 

Three-dimensional, shell-averaged, energy spectra for the three cases are presented 
in figure 1. The two cases with the highest Re, show a short 'inertial' range with a 
power decay close to k-2. No such interval is present at the lowest Re,, but the collapse 
of the dissipation range is satisfactory, although there appears to be a weak trend 



Intense vorticity in isotropic turbulence 69 
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FIGURE 1. Three-dimensional energy spectra for the four different Re, used in this paper. (a)  &E(k), 
to display the inertial range; (b) &,-iE(k), to display the dissipation range. For symbols see table 1. 
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FI~UFE 2. One-dimensional energy spectra for different Reynolds numbers. (a) Longitudinal spectra, 
2.53z3E1,(k1). Lines are simulations, as in table 1. Symbols are experimental data: a, grid turbulence, 
Re, = 113 (Compte-Bellot & Corrsin 1971); 0 wake, Re, = 182 (Champagne 1978). (b) Isotropy 
coefficient, defined in (1). 

towards fuller dissipation spectra with increasing Reynolds number. The Kolmogorov 
constant in the inertial range is C, z 2. The small upturns at the highest-wavenumber 
end of the spectra are numerical, and reflect the incorrect representation of the 
turbulent cascade mechanism at wavenumbers comparable with the numerical 
resolution. Their comparatively small magnitudes are a measure of the numerical 
quality of our simulations. 

Figure 2 (a) displays one-dimensional longitudinal spectra, Ell(kl), which are 
compared to experimental results at similar Reynolds numbers. The agreement is 
satisfactory in the dissipation range, but there are differences in the large scales, 
reflecting the different types of flow. Figure 2(b) displays an isotropy coefficient, 
defined as 

, (1) Ell(k1) - kl aEll(k1)lakl 
2E,,(kl) 

where E,, is the transverse one-dimensional spectrum. This quantity should become 
equal to 1.0 for an isotropic field (Batchelor 1953), and it does so approximately for 
the small scales in the two high-Re, cases, suggesting that they have attained 
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equilibrium. The two cases with lower Reynolds numbers do not satisfy isotropy, 
clearly because of insufficient separation between the smallest and largest scales. The 
reason for the upturn of all the isotropy spectra at the high-wavenumber limit is not 
clear, but it is repetitive and survives long-time averaging. It is probably related to 
cross-contamination from the large energetic scales, since (1) should only be expected 
to be strictly satisfied when all the flow scales are isotropic. 

In summary, the flows used in this paper seem to be typical of experimental 
approximations to homogeneous isotropic turbulence. It is particularly important to 
note that the two highest Reynolds numbers display a short k-g inertial range and 
appear to have reached the asymptotic regime in which the energy dissipation and the 
Kolmogorov constant become independent of the Reynolds number. 

3. Worms 
Implicit in the Kolmogorov (1941) model for the turbulent cascade is the idea that 

the small scales of turbulence are fully controlled by the viscosity v and by the energy 
dissipation rate e = v d 2 .  This, and the dimensional arguments of the original theory, 
imply that the velocity gradients should reach some asymptotic statistical distribution 
as Re+oo, whose single scale should be w'. Evidence that this is not so has 
accumulated over the years, starting with the measurements of higher statistical 
moments mentioned earlier, and more recently in the form of increasingly non- 
Gaussian histograms obtained from numerical experiments at increasing Reynolds 
number (Siggia 1981; She et al. 1990; Vincent & Meneguzzi 1991; Ruetsch & Maxey 
1991). 

Probability density functions for longitudinal and transverse velocity gradients in 
our simulations are given in figure 3 .  It is clear that the distributions are non-Gaussian 
and that there is no evidence of convergence towards a limiting distribution in our 
Reynolds-number range. The figure also contains numerical and experimental data 
from previous investigators. The results of She (1991) fall well into the apparent 
Reynolds-number evolution of our observations. Those of Vincent & Meneguzzi 
(1991) seem to correspond to a slightly lower Re,, and are closer to what we obtain for 
Re, = 170 and lower resolution, K7 x 1. Since their resolution was lower than ours, the 
discrepancy is probably numerical. Note also that the value of Re, = 150, given in their 
paper, corresponds to a definition different from ours. The only experimental data are 
those from Castaing, Gagne & Hopfinger (1990), in a turbulent jet at Re, = 852, and 
correspond to longitudinal velocity differences u(x+h) - u(x), with h = 3.37. They 
should be approximately comparable to numerical derivatives with K7 c 1. Since our 
experience indicates that increasing the resolution leads to flatter histograms, theirs are 
probably slightly below what they should be, and the fact that they are so much flatter 
than ours is a strong indication that the trend in our data continues at much higher 
Reynolds numbers. 

The high-order moments of the different distributions are given in table 2. We define 
the nth-order flatness or skewness of a variable y as I$ = ( ~ ) / ( ~ ) " / 2 .  In agreement 
with previous results, the distribution of the velocity fluctuation is independent of 
Reynolds number, and is slightly steeper than Gaussian, while those of the velocity 
gradients become increasingly non-Gaussian with Reynolds number. Note that we not 
only observe an increase in the flatness of the longitudinal gradients, but also a weaker 
but consistent increase in its skewness, which is even more apparent in 8. An increase 
in skewness has been reported in observations of atmospheric flow (Van Atta & 
Antonia 1980) but had not been observed up to now in numerical simulations. 
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(au/axymt (auiay)im' 
FIGURE 3. One-dimensional probability density functions for (a) the longitudinal and (b) the 
transverse velocity gradients. Lines are the present simulations, and follow the notation in table 1. 
A, Experimental data from Castaing et al. (1990), Re, = 852; 0, simulation data from Vincent & 
Meneguzzi (1991), Re, = 190; +, x , simulations (She 1991), Re, = 77 and 24, respectively. 

U 

Re, 4 F ,  -4 
Gauss 0 
35.1 2.80 12.0 0.490 
61.1 2.85 13.0 0.495 
94.1 2.80 12.0 0.520 

168.1 2.80 12.5 0.525 

aqax 

4 -5 F, 4 4  
3.0 0 15 
4.2 6.5 40 5.7 90 
4.6 8.0 55 6.1 110 
5.3 10.0 80 7.6 200 
6.1 12.0 125 9.4 370 

TABLE 2. Higher-order moments for the distributions of a velocity component, ti, and its longitudinal 
and transverse gradients, &/ax and aulay. The nth-order flatness or skewness are denoted by F,. 
Significant figures estimated from variation among fields. The first row contains the moments for a 
Gaussian distribution. 

We will concentrate here on the statistics of the quantities appearing directly in the 
vorticity equation, 

where Iwl = (wi wi): is the vorticity magnitude, and Sii = $(aut/axi + aui/axi) is the rate- 
of-strain tensor. In particular, we will be interested in the statistics of 101, Is1 = (Si, &#, 
and the stretching rate 

wi s, wj 

bI2 
0- = -* 

The square of the total rate of strain, Is[, is proportional to the local dissipation, but 
it does not appear explicitly in (2). It is probably more a consequence of the events that 
lead to turbulence than their cause. The quantity CT is the part of the strain that is 
aligned with the local vorticity, and it is the term stretching the vortex lines in (2). 

One-dimensional histograms for the volume fraction occupied by values of these 
three variables above a given threshold are given in figure 4. They are all far from 
Gaussian, except perhaps for the lowest Reynolds number, and show few signs of 
converging to a limit distribution for large Re,. Note however that the variable tails 
involve only small fractions of the total volume. The figure also contains a histogram 
for the fraction of the total enstrophy contributed by points with a vorticity magnitude 
above a given threshold. Even though the decay of this histogram is slower than that 
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FIGURE 4. One-dimensional histograms of the volume fraction occupied by points above a certain 
threshold. (a) Vorticity, (b) strain rate, (c) stretching rate, (d )  fraction of total enstrophy associated 
with points above a given vorticity magnitude. Lines as in table 1. Open circles are from Ruetsch & 
Maxey (1991) at Re, = 62. 

of the volume fraction, most of the enstrophy is still contained in a relatively ‘weak’ 
background where IwI w O(d). In fact, for the Reynolds numbers of our simulations, 
the contribution of the intense tails to the integrated value of any of the low-order 
statistics of the flow is only a few percent, although they would clearly dominate 
sufficiently high-order moments. Similar results were obtained by Ruetsch & Maxey 
(1991) at Re, w 60 (see figure 4). 

The conclusion from these histograms is that most of the volume in the flow is 
occupied by relatively ‘weak’ vorticity, with strong vortices filling only a small fraction 
of the space. The structures of the weak and strong vorticities are also very different. 
Figure 5 shows a collection of vortex lines passing through randomly chosen points on 
the middle plane of a region within a high-Re, simulation, and continued until they 
leave the region. The vortex lines are exactly the same in both cases, but on figure 5 (a) 
they are displayed only where 0.20‘ < Iw( < w’, while on figure 5(b) they are displayed 
where 101 2 w’. While there is little apparent structure in the low-intensity component 
of the flow, the strong vorticity tends to be organized in tubes or ribbons, which are the 
‘worms’ reported in previous experiments. It is remarkable that this seems to be true 
even at a threshold, w‘, which is much lower than the one used in most previous reports, 
and which still contains most of the total enstrophy. 

For the rest of the paper, we will arbitrarily define weak vorticity as that having 
IwI < d, intense vorticity, or worms, as that above a threshold covering 1 % of the total 
volume, and background vorticity as that above w’ but weaker than the intense 
threshold. This definition of worms results in pictures roughly comparable to those of 
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FIGURE 5. Vortex lines for homogeneous isotropic turbulence, Re, = 168. Length of z-axis z 1007. 
(a) Only 0 . 2 ~ '  < Iwl < w ' ;  (b) only IwI > 0';  vortex lines are the same in both sets. 

previous workers, and is about as low as the threshold can be taken before the visual 
complication becomes overwhelming. Figure 5 shows that the organization into 
coherent structures is still present at the background level. At the Reynolds number of 
the figure, the vorticity above w' fills 25 % of the volume, and accounts for 80 'KO of the 
total enstrophy, while intense vorticity above 3. lw' fills 1 'KO of the volume and accounts 
for 15 'KO of the enstrophy. For comparison, in a field with a Gaussian distribution for 
each vorticity component, vorticity magnitudes above w' would fill 39 'KO of the volume, 
and contain 70 YO of the enstrophy, while the 1 'KO volume threshold would be at 1.95w', 
and contain 8.5 % of the enstrophy. 

The length of the horizontal ( z )  axis in figure 5 is one eighth of that of the whole 
cube, and one half of the integral scale of the flow. Some ribbons are seen to span the 
whole region, although not with uniform intensity, and they may appear disconnected 
in plots of the high-enstrophy worms. Intense worms, with lengths comparable to the 
integral scale, are found occasionally. 

The shapes of the regions of highest vorticity (1 'KO) are displayed in figure 6, at two 
different Reynolds numbers. In agreement with previous reports they appear to be 
either cylindrical vortices or ribbons of various widths. Although no real statistical 
analysis was made, the impression from different fields is that sheets and ribbons are 
predominant at low Reynolds numbers, while cylindrical vortices dominate at high 
Re,,. This is apparent in figure 6, and is consistent with the idea that the worms are the 
results of stretching by strains which are generally not axisymmetric. 

If a generic strain is applied to a weak-vorticity blob, the vorticity component along 
the most extensional eigenvector is amplified most, but the other two principal strains 
remain active and stretch or compress the vortex unequally along the two equatorial 
axes. As the axial vorticity becomes stronger, it dominates the local flow and its 
rotation tends to make the vortex axisymmetric. The result is a vortex of elliptical 
cross-section, whose eccentricity becomes smaller as the ratio of the axial vorticity to 
the driving strain becomes larger. It will be shown later that the strain is generally 
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FIGURE 6. Intense-vorticity isosurfaces, lo l /w’  2 2.5, at two different Reynolds numbers. Resolution 
is similar in both subsets, with the length of each axis % 1007. (a) Re,, = 63, integral scale L = 567; 
(b) Re, = 95, L = 807. Thresholds are chosen so that worms contain about 1 % of total flow volume. 

FIGURE 7. Intense-vorticity regions \w\ > 2.7w’, and velocity field, Re, = 168. Size of the display 
domain is (8002 x 50)7, periodic in the two long directions. Velocity vectors correspond to points in 
the mid-plane. 

O(w’), while it is clear from figure 4 that vortices in higher-Reynolds-number flows 
attain larger vorticities. This, together with the previous argument, explains their more 
circular cross-sections. 

The spatial distribution of the worms is not uniform over scales of the order of the 
integral length L,  although this is difficult to see in graphical representations of large 
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FIGURE 8. Background vorticity 101 > w’ (light grey), at centreplane in figure 7, in relation to 
darker intense regions, 101 > 2.7~’ .  Vectors are velocity. 

flow volumes. Figure 7 displays a thin slab across a complete flow field. The worms are 
seen to lie on the borders of large-scale velocity eddies, the energy-containing scales, 
which are themselves relatively free from vorticity. This is even clearer in figure 8, 
which represents the mid-plane of the slab shown in figure 7. The light-coloured 
regions in this figure mark the background vorticity, IwI > w‘. The darker regions are 
the worms, which are seen to be embedded in the background, of which they constitute 
the local maxima. The large eddies themselves are mostly free even from background 
vorticity, although it follows from the vorticity histograms that the magnitude of the 
most probable vorticity scales with w’, and that velocity gradients of the order of the 
driving large-scale flow, O(u’/L), are relatively rare (see figure 15). 

4. Truncated fields 
Even though the results in the previous section suggest that, at least at these 

Reynolds numbers, the worms contribute relatively little to the turbulent statistics, it 
is conceivable that they may be important indirectly in some other respect. There is also 
the possibility that the worms themselves may be spurious artifacts of the forcing 
method, and that they would not be present in ‘natural’, decaying, turbulence. 

To clarify these points we have carried out a series of experiments in which the 
worms are artificially removed from a flow, so that the properties of both the truncated 
field and of the isolated worms can be studied independently. Consider a flow field 
given by a velocity u(x) and a vorticity o = V x u. We wish to generate a new field u,, 
associated just with the worms, by eliminating the vorticity at points where its 
magnitude is smaller than a given threshold, IwI d SZ. This field cannot be constructed 
by simply zeroing the vorticity of the original flow at the desired points. The resulting 
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FIGURE 9. Effect of the truncation threshold on the worm fields truncated to 101 > 52, as described in 
text. (a) Simple solid line, volume fraction above vorticity threshold in original field ; dashed, 
enstrophy above threshold; dashed with circles, enstrophy of truncated field, as fraction of original. 
Solid with triangles, kinetic energy of truncated field. (b) Enstrophy spectra; threshold, in order of 
decreasing enstrophy at low wavenumbers: 52/01‘ = 0, 1, 1.41, 2.45, 2.83. Re, = 168. Straight solid 
lines indicate power laws. 

10-3 1 

FIGURE 10. Time evolution of the histograms for the volume fraction occupied by vorticity whose 
magnitude is above a given threshold, during decay of a flow field initially truncated to Iw1 < 1 So’. 
Re, = 96. Decay time, left to right: u‘t /L = 0, 0.019, 0.037, 0.056, 0.073, 0.158. All normalizations 
refer to the initial field before truncation, whose histogram is given by the right-most line in the figure. 

vortex lines would not be closed, and no velocity could be constructed. Consider the 
naively truncated field 

a, = w if IwI > 0, w, = 0 otherwise. (3) 
This field is generally not solenoidal, V - wo + 0. We define the worms as the field a, 
= o, + A ,  such that V - a, = 0, and such that the added enstrophy sldl2 dx is as small 
as possible. Note that vorticity of this field is not strictly zero outside the worms, but 
that the construction guarantees that the undesired residual is a minimum. It follows 
from straightforward variational analysis that A = -Vh, where the scalar h satisfies 

Note that the new field is simply the solenoidal projection of w,, and that a velocity 
can be computed from it. 

The effect of this truncation is shown in figure 9(a), which displays both the 
enstrophy and kinetic energy of the truncated worm fields, as a function of the 
threshold, as well as the volume and enstrophy associated with regions of the original 
field having vorticity above that threshold. It is seen that projection decreases only 

V2h = v * wo. 
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slightly the enstrophy contained in the worms. A visual check of the corresponding 
enstrophy isosurfaces confirms that the intense regions in the truncated field correspond 
to those in the original one, but that the vorticity in the background has been mostly 
eliminated. The energy of the truncated flow is always small, roughly proportional to 
the volume occupied by the worms themselves. There seems to be no appreciable local 
enhancement of the kinetic energy due to the presence of the worms. This is confirmed 
by inspection of the velocity fields in figure 7 and 8, and by the absence of Reynolds- 
number effects in the fluctuation velocity distributions. 

Similar experiments on the truncated background fields, resulting from the removal 
of the vorticity above a given threshold, reveal a complementary effect. The effect of 
removing the worms is small, both on the enstrophy and on the energy, and it only 
becomes appreciable when the truncation threshold is comparable to w‘. 

In addition, no particular characteristic of the energy spectrum seems to be especially 
associated with the worms. Figure 9 (b) displays enstrophy spectra, 2k2E(k) ,  for the 
high-vorticity component at different truncation thresholds, each of them normalized 
by its own Kolmogorov scaling. The spectrum of the original field is consistent with an 
inertial range, E(k) - k-9, while that of the high-intensity worms is close to E(k) - k-l ,  
but the variation of the spectrum is gradual, proportional to the removal of the total 
kinetic energy. The latter spectrum was shown by Townsend (1951) to be that of a 
random array of vortex tubes of uniform radii and is therefore consistent with the 
observed structure of the worms. 

Since the integral of the dissipation is proportional to that of the enstrophy, the 
effect of removing the worms, which contain only a small percentage of the latter, is 
not expected to have a large effect on the decay of the kinetic energy of a turbulent field. 
This was tested directly by comparing the evolution of the decay from identical initial 
conditions with and without the worms removed. An equilibrium field was generated 
(Re, = 96) and the forcing was removed to allow decay. The same initial conditions 
were then truncated to IwI < 2 . 5 ~ ’ ~  and again allowed to decay. The evolution of the 
energy in both cases was almost identical, when the decay rate was normalized with the 
initial enstrophy of each field. The enstrophy of the truncated field initially decayed 
faster but after a short transient, during which it decayed by about 7%, it behaved 
similarly to that of the non-truncated field. The difference in the total enstrophy of the 
initial fields at this truncation level was 20 %. 

A more severe truncation was applied to determine whether the presence of the 
worms could be somehow associated with the forcing scheme . The same flow field as 
in the previous experiment was truncated to 101 < 1.5w’, and left to decay. Figure 10 
shows the time evolution of the volume-fraction histograms. It is clear that, after a 
short time, the worms reappear, even in the absence of forcing. This was checked 
directly by visualization. 

It follows from these experiments that the worms are a natural product of the 
evolution of turbulent flows, both forced and decaying. They do not seem to play any 
special role, besides that which corresponds to the energy and enstrophy that they 
contain. At the Reynolds numbers of our experiments, both are small fractions of the 
total. 

An interesting observation is that the skewness coefficient of the fields formed from 
the high-intensity regions was always negative, and roughly of the same order as that 
of the full turbulent field (4 = - 0.5 to - 1 .O). The high-intensity regions do strain each 
other, and they are capable of generating new enstrophy, although the relatively low 
kinetic energy that they contain implies that the Reynolds number of the truncated 
flow is low. 
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5. The dynamics of worm formation 
Although the worms do not seem to play a special role in the overall dynamics of 

turbulent flows, the process by which they are formed is interesting in itself. Moreover, 
since they appear to be part of the general O(w’) background vorticity, we may look 
at their generation as a particular case of the enstrophy transfer process, which is one 
of the central issues of the turbulence problem. Finally, since they do not scale correctly 
in Kolmogorov variables (i.e. the histograms do not scale with w’),  their generation 
mechanisms might point to some deficiency in the standard cascade theory, especially 
as Re,+ co. 

Qualitatively, it is clear that strong vortex regions have to be formed by the straining 
of weaker vorticity. No other mechanism is available, away from no-slip walls, for the 
production of enstrophy. Strain itself is induced by the vorticity, and the process may 
become nonlinear. It has been realized for some time that nonlinear self-interaction of 
vorticity can, in principle, lead to a singularity of the inviscid equations in finite time, 
and that it may therefore be used to explain the generation of vorticity of almost any 
magnitude. 

An analysis of the order of magnitude of the different processes might be relevant 
at this point. If we apply a strain rate a to a viscous fluid, the smallest flow features that 
we may expect to generate are of the order of Burgers’ radius, 6 = (v/a)i. There are two 
‘natural’ straining scales in turbulence: the strain rate generated by the large eddies, 
l / T  = u‘/L, and the inverse of the Kolmogorov timescale, which is equal to the r.m.s. 
vorticity w‘ = (e/v)i .  The Burgers’ radius for the former is the Taylor microscale A, 
while that for the latter is the Kolmogorov lengthscale 7. Moreover, if we think of a 
cylindrical equilibrium Burgers’ vortex, generated by a strain rate a, its peak vorticity 
would be w,,, - Re,a, where Re, = y / u  is a vortex Reynolds number based on its 
total circulation. If we assume, for example on stability grounds, that Re, cannot be 
larger than a given limit, independent of the applied strain, the peak vorticity should 
never be more than a fixed multiple of the strain. 

We have evidence in the histograms in figure 4 that the flow contains peak vorticities 
that increase with Reynolds number faster than w’. From the previous discussion, this 
implies either that stretching rates higher than w’ occur, or that Re, increases with Re,. 
The first possibility implies that we should find structures with a transverse scale 
smaller than 7, and that this discrepancy should increase with increasing Re,. This 
contradicts the relatively good collapse of the energy spectra in the dissipation range, 
expressed in Kolmogorov variables, although some weak effect cannot be ruled out 
from the experiments. The second possibility raises the question of how such high- 
Reynolds-number vortices remain stable long enough to form. 

To answer this question we undertook a statistical investigation of the dimensions 
and circulation of the intense-vorticity structures. Most previous investigations find 
their radii to be a few Kolmogorov scales and their length to be of the order of the 
integral scale. A survey, including some new measurements of radii and intensity, is 
contained in JimCnez (1991). It was concluded that, for the available flow fields, the 
average radius was approximately 311157, and Re, M 150-400. It was noted, however, 
that most of the data were at Re, M 100, and that no reliable Reynolds-number scaling 
trend could be deduced. We believe that the present investigation is the first in which 
enough data, with uniform resolution and overall quality, have been collected over a 
wide enough range of Reynolds numbers to allow a Reynolds-number scaling study. 

An automatic tracking algorithm, described in detail in the Appendix, was 
implemented and applied uniformly to all the data fields. Briefly, a point on the worm 
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axis is identified as the point with maximum vorticity that has still not been assigned 
to any worm, and the axis is followed until either its peak vorticity falls below w’, or 
until the worm closes into itself or intersects another worm that has been previously 
followed. At each point along the axis, the vorticity in the normal plane is averaged 
azimuthally, and the resulting radial distribution is fitted to a Gaussian. The local 
radius of the worm is defined as the l /e radius of the Gaussian, and the circulation as 
that of the fitted distribution. Because of the azimuthal average, it can be shown that 
the ‘radius’ computed for a ribbon or for a sheet is much close to its thickness than 
to its width. It was, unfortunately, impractical to continue this process until no more 
worms could be found, and the samples used here represent what could be achieved in 
a fixed amount of computer time. A rough estimate of the total volume of the worms 
in the sample, compared to the volume occupied by vorticity above w’,  suggests that 
the sample contains most of the worms in the lowest-Reynolds-number case, but only 
about 1 YO of them in the highest one. Average values of worm length, radius and 
circulation are given in table 3. A comparison with the range of scales in table 1 is 
enough to show that the scalings chosen here are fairly robust, at least in this range of 
Re,, and that significantly different choices would lead to much poorer fits. In 
particular, the worm radii 7cale with 7, their lengths with the integral scale L, and their 
circulation increases as Re:. 

These results have to be interpreted with some care in view of the different fractions 
of the flow field sampled at each Reynolds number. Since each worm is initialized from 
the point with the most intense vorticity still unmarked, the resulting catalogue of 
worms is naturally ordered from the strongest to the weakest, and it is conceivable that 
the growth of the circulation with Re, may just reflect the averaging over a smaller 
sample at the high end of the distribution. On the other hand, circulation and vorticity 
along a single worm vary widely (see figure 13), and it is also possible that each worm 
is representative of the overall distribution of radius and vorticity, in which case the 
results in table 3 would be unbiased. To clarify this point, statistics were compiled for 
each individual worm in the sample corresponding to each Reynolds number, and the 
resulting mean values were analysed for intersample variability and for any trend as a 
function of the order in which they had been detected by the tracking algorithm. If 
there was a tendency for stronger worms to be detected earlier, it would be reflected as 
a trend in the average circulation to decrease with the order of appearance of the worm 
in the sample. The absence of such a trend would prove that each individual worm is 
representative of the whole sample, and that the statistics compiled over small samples 
are not biased with respect to those compiled over large ones. No significant trends 
were found either in the variances or in the mean values. At Re, = 63, where the 
volume fraction of the high-vorticity regions is comparable to that contained in the 
worms in our sample, the standard deviation among the average circulations for the 32 
different worms was about 33%, and a least-squares linear fit to the averages as a 
function of the order of appearance gave a difference of 6 YO between the first and the 
last worm. Similar results were obtained for the other Reynolds numbers, with some 
sets actually increasing in circulation with order of appearance. We can therefore 
conclude that the statistics on which table 3 is based are not biased as a result of the 
sampling. 

The scalings of radius and circulation are consistent with those observed in JimCnez 
(1991) for the intense longitudinal vortices in the wall region of a turbulent channel. It 
was shown there, on the basis of rather limited data, that the radii of the vortices scale 
well in wall units, within a range of Reynolds number Re, = 10&200. The circulations, 
however, do not remain constant, and increase by a factor of almost two in the same 
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FIGURE 11. Probability density of (a) worm radius and (b)  circulation at four different Reynolds 
numbers. Symbols as in table 1. Normalization has been chosen to optimize collapse. 
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FIGURE 12. Radial vorticity distribution for different cross-sections along 
a typical worm. Re, = 62.8. 

Re, I/L R/v  Re,/Ret N, 
35.8 3.16 4.22 21.1 26 
62.8 2.60 4.16 17.0 32 
94.5 3.15 4.16 18.1 14 

168.1 2.88 3.85 16.5 23 
TBLE 3. Average worm characteristics, as identified by the tracking algorithm defined in the text. 

N ,  is the number of worms in each sample, Z their average length, and R their radius. 

range. Since wall units are the near-wall equivalent of Kolmogorov scaling, those 
trends are equivalent to the ones observed here. In the same spirit, the recently 
established tendency of near-wall turbulent fluctuations to increase with Re,, beyond 
their dependence in wall units (Wei & Willmarth 1989), can be considered as related 
to the failure of Kolmogorov scaling observed in figure 4. 

The actual probability density distributions of radius and circulation are given in 
figure 11, and a sample of azimuthally averaged vorticity profiles across a typical worm 
is given in figure 12, showing that the Gaussian model is at least reasonable. This model 
is consistent with that of an axially stretched equilibrium Burgers’ vortex. The 
distributions of radius and circulation along the length of a few typical worms are given 
in figure 13 for the four different Reynolds numbers. The length is normalized with 9, 
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FIGURE 13. Distribution of normalized radius and circulation along worm axes, as a function of 
arclength 1. Each figure contains four worms chosen at random. (a) Re, = 35.8, (b)  62.8, (c) 94.5, 
(d )  168.1. 
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FIGURE 14. Portrait of a worm interaction, identified by a local maximum of the stretching term v. 
Re, = 94.5. Length of axes, approximately 407. (a) Intense-vorticity isosurfaces, IwI = 2.80’. (b) 
Vorticity vectors within the surfaces in (a). Vector lengths are proportional to vorticity. (c) Stretching 
and vorticity magnitude in the horizontal plane outlined in (a). Isolines are 5, at 0 . 2 ~ ’  increments; 
negative contours, dashed; zero contour not shown. Light grey, w’ < IwI < 2 .8~’ ;  dark grey, 
101 > 2.80’. ( d )  Same as (c), but isolines are strain-rate magnitude, 1x1 > w’ at 0.2w’intervals. 

which is proportional to the mean radius of the structures, and which is the scale at 
which internal instabilities of the worms could first be expected to appear. It is difficult 
to extract general trends from this figure, and the number of actual coherent worms in 
each field is too small to allow for accurate statistics, but it is surprising that no obvious 
increase in complication is detected as Re, increases, even if we known from the 
previous analysis that higher Re, implies an increase in the Reynolds number of the 
vortices themselves. It is not clear why the worms are not becoming internally turbulent 
as their Reynolds number increases, and the interesting question is whether that will 
remain true at high enough Re,. This question cannot be answered directly here, but 
some analysis is possible on the type of complexity present in the worms in our sample. 
It is clear from figure 13 that the traces of circulation are noisy and, although part of 
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FIGURE 15. Joint probability densities of (a) strain-rate magnitude and (b) stretching, versus vorticity 
magnitude. All values are normalized by 0’. Density contours are logarithmic and spaced by a factor 
of 10. Lines as in table 1. 

the noise is probably due to detection problems, some is real and survives the 
application of different detection algorithms. Since the circulation of a coherent vortex, 
defined as a fixed set of vortex lines, is constant along its length, the peaks in the 
circulation traces should be interpreted as interactions with other vortices. 

Interactions between adjacent worms are indeed common in the flow fields, and can 
often be found by looking for ‘active’ spots in which either the vorticity or the 
stretching are especially large (see figure 14). Interactions between strong vortices and 
weaker vorticity are still more common, and they do not usually result in the 
destruction of the stronger partner. When the detection algorithm is applied near an 
interaction, the assumption of Gaussian vorticity distribution fails, which is probably 
the cause of the large peaks which appear in the plots. A more troubling question is 
whether a given structure can be identified as the same object after being tracked 
through an interaction. Inspection of figure 14 suggests that the central core of each 
vortex conserves its identity even after two vortices interact closely, but that their outer 
layers merge and probably exchange vortex lines (figure 14c, d). The statistics of vortex 
lengths in table 3 must be interpreted in this context. Worms can be traced for lengths 
comparable to the integral scale, but they are formed by shorter segments separated by 
strong interactions. It is argued below, on theoretical grounds, that this structure may 
correspond to their formation by accretion of smaller units. 

The question of the origin of the stretching that generates the worms has still not 
been addressed. Figures 15 and 16 show two-dimensional joint probability density 
functions for vorticity magnitude and strain rate. Figure 15 (a) compares total strain 
rate Is] = (SzjSii)i with vorticity magnitude. It is clear from the figure that there is a 
correlation between these quantities, although a rather weak one. Strong vorticity 
coexists with strong strain, either because strong vortices generate high strains, or 
because they are generated by them. That alternative is addressed in figure 15 (b), which 
compares vorticity magnitude with the stretching term (T. This histogram shows that 
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FIGURE 16. (a) Joint probability density of stretching versus strain-rate magnitude. (6) Univariate 

probability density of c~/lsl. Lines as in table 1. 

the highest stretching rates are not associated with regions of high enstrophy, but 
rather with the background vorticity O(w’). In fact, the stretching associated with the 
highest-enstrophy regions is fairly low, with little evidence of self-stretching by the 
strongest structures. This apparent lack of correspondence between the behaviour of 
the total strain and that of the stretching component is also clear in figure 16, which 
compares these quantities. Although there is clearly a correspondence between high 
strain rate and large stretching, in the sense that strong stretching or compression is 
associated more often with strong strains than with weak ones, the correspondence is 
only moderate, and the distribution of the ratio ~ / l s l  is broad, peaking at low values 
rather than near the extremes. This ratio can be shown to be kinematically limited to 
the interval &, which accounts for the sharp lateral cutoffs in the histograms in 
figure 16 but, within those limits, B and Is1 are only weakly correlated. Strong strain 
does not necessarily mean strong vorticity compression or stretching, and the 
orientation of the principal axes of the rate-of-strain tensor seems to be relatively 
independent of the local vorticity direction. This is also seen in figure 14(c, d), in which 
the total strain and the stretching terms are plotted independently. The total strain rate 
(figure 14d) is relatively well correlated with the presence of strong vorticity, but the 
stretching is much more randomly distributed, and both strong compressions and 
extensions are present, close to each other. Plots of over larger sections of the flow 
field reveal a spotty distribution, with a tendency to concentrate on the periphery of 
background (or intense) vorticity, but not in its interior. Apparently, once vorticity is 
stretched to a high enough amplitude, it decouples from the original strain field and 
looses its orientation relative to it. 

The different behaviour of Is1 and CT for high-vorticity regions can be quantified by 
examining the conditional average of each quantity over points with a given IwI, which 
can be derived from the distributions in figure 15 as 

(6; 14) = JSP(i, 14) dC/JP(& 14) dQ 

where p(c,  Iwl) is the joint probability density function. While the mean rate of strain 
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FIGURE 17. Conditional average of the stretching rate, u, for points with a given value of t,he 
vorticity magnitude. Lines as in table I ,  but short solid line represents the scaling u - (wlj. 

(Is1 ; Iwl) increases rapidly with IwI (see figure 15 a), the mean stretching (a; Iwl) increases 
much more slowly and, in fact, appears to scale as 101; (figures 15b and 17). Note that 
this latter quantity appears directly on the right-hand side of the evolution equation for 
the total enstrophy histogram (Z.-S. She, private communication). 

All of this is consistent with the result, obtained by previous investigators, that there 
is little preferential alignment of the vorticity with the rate-of-strain tensor at low 
vorticity magnitudes, and that the alignment is with the intermediate (weakest) 
eigenvector in the intense regions (Ashurt et al. 1987). 

It is interesting to note that there seems to be a fairly good collapse of the 
distribution of v/lsl for different Re,. The distribution of a is tilted, in both figures 16 
and 15(b), towards positive values of CT. This asymmetry corresponds to the negative 
skewness of the longitudinal velocity derivatives, and makes possible the net 
amplification of vorticity. 

One of the most striking features of these probability distributions is the similarity 
of their shape at different levels. The probability distributions, scaled on w’, collapse 
closely near the origin, corresponding to the good collapse of the one-dimensional 
histograms in that range. Even away from that point, where the higher-Reynolds- 
number cases display much stronger tails, the shapes of the distributions are very 
similar for the high and for the low Reynolds flows. The outer, low-probability, isolines 
of the low-Reynolds-number distributions coincide almost exactly with the inner, high- 
probability ones, at high Re,. This suggests again that, whatever mechanism is 
responsible for the generation of high-enstrophy or of high-strains regions, it is 
independent of Reynolds number, and that the only difference is that it becomes more 
common as the Reynolds number increases. The similarity of inner and outer contours 
also suggests that the dynamics of the intense regions is not fundamentally different 
from that of the O ( d )  background. 

6. Discussion and conclusions 
We have presented measurements of the structure of the intense vorticity regions in 

numerical turbulent flow fields at four different Reynolds numbers, ranging from 
Re, = 35 to 170. Numerical resolution in terms of 7, and running time in large-eddy 
turnover units, were kept as constant as possible. The fields themselves are in statistical 
equilibrium with a suitable forcing, and the two higher Reynolds numbers are already 
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in the ‘asymptotic’ range in which dissipation becomes independent of Re,. In this 
sense, we are dealing with true turbulent flows. These last two fields also exhibit an 
inertial k-4 spectral range that, in the highest-Reynolds-number case, spans almost a 
decade. The collapse of all the spectra in the dissipation range, when expressed in 
Kolmogorov units, is excellent, although there is a suggestion of a weak trend to 
slightly fuller spectra at higher Reynolds numbers (figure 1). The energy spectra in this 
range are exponential, with an algebraic prefactor. 

We give univariate histograms for several quantities related to the velocity gradients, 
particularly for those related to the terms of the vorticity production equation. These 
distributions are not Gaussian and they do not collapse in Kolmogorov units (w’). 
There is a strong trend to longer tails indicating intense events at higher Reynolds 
numbers, which shows no signs of convergence to an asymptotic distribution within 
our experimental range. Comparison with experimental data at much higher Re, 
suggests that this trend continues beyond our range. 

We have confirmed, in accordance with previous investigators, that the physical 
structure of these intense events is that of long coherent vortices, of more or less 
elliptical cross-section (‘worms ’). Although we lack adequate statistical confirmation, 
the eccentricity of the cross-section appears to decrease as the Reynolds number 
increases. We have offered an explanation in terms of the relative strength of the strain 
and vorticity in those regions. 

By means of an automatic tracking algorithm, we have determined scaling laws for 
the kinematic properties of the worms. Their radii scale with the Kolmogorov 
microscale, their lengths with the integral scale of thel flow, and their circulations 
increase with the Reynolds number as Re, = y/v - Re:. With respect to this latter 
scaling, the data might be consistent with a slightly higher or lower exponent, but they 
are not consistent with the obvious hypothesis that Re should remain constant. 

We have tried to clarify the dynamics of worm formation by means of joint 
probability densities of strain rate and vorticity. As expected, high enstrophy and 
high strain rate are associated with one another, although rather loosely, but 
surprisingly the association of strong vorticity with high values of the stretching rate, 
CT = wi S ,  is much weaker. In fact the stretching of the high-intensity worms is 
low, and seems to scale well with the background vorticity w‘, with at most a weak lwli 
dependence in its conditional average. Since the Burgers’ radius for a strain rate of 
order w‘ is (v /w’) i  = 7, this is consistent with the scaling of the radius quoted above, 
and strongly suggests that self-stretching is not an important factor in the evolution of 
the intense vorticity. 

An interesting observation is that the shapes of the probability isolines in the tails of 
the joint distributions are essentially similar to those in their central parts, and that 
they are quite independent of the Reynolds number. This, together with the previous 
observation on the lack of self-stretching, suggests that the worms are merely 
particularly intense realizations of the background vorticity field, 101 > w‘. This 
background component is responsible for most of the turbulent dissipation (80 %), but 
fills a smaller percentage of the flow volume (25%). We have presented some 
indications that the background vorticity is concentrated in large-scale turbulent 
vortex sheets separating the energy-containing eddies at the integral scales. The worms 
are imbedded within this background (figures 6 and 7). 

We have also shown, by removing the worms artificially from an equilibrium 
turbulent field and studying its further development, that worms are not especially 
important in the overall dynamics of turbulence, and that they are only responsible for 
the fraction of the kinetic energy proportional to the volume that they occupy, and for 
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the fraction of the dissipation proportional to their integrated enstrophy. Both 
fractions are small at the Reynolds numbers of our simulations, but could become 
larger in the limit Re,, %- 1. We have also shown that worms are not artifacts of forced 
turbulence. If they are removed from a decaying field, they reappear within a small 
fraction of a turnover time. 

The lack of convergence of the probability distributions appears to support the 
multifractal models of turbulence, in which cascades of increasing intensities are 
concentrated on increasingly small regions of space. The way in which this local 
concentration occurs is somewhat surprising, but it is consistent with previous 
indications from the near-wall region of turbulent channels. Instead of vortices of fixed 
circulation being stretched more at higher Reynolds numbers, our data imply 
increasingly strong vortices being stretched by a fixed amount. 

The question of how these vortices are formed will not be addressed here, and will 
be the subject of future publications. The purpose of this paper is to present a data base 
that can be used to constrain any such future model. It may still be of some interest 
to discuss briefly the nature of some of these constraints. There are three basic 
questions : how are the large vorticities generated, why does Re, increase with Re,, and 
how can small-scale structures, such as the worms, maintain a length of the order of 
the integral scale? 

The first question presents no qualitative difficulty, although its quantitative answer 
lies at the heart of the turbulence theory. High vorticity is generated by stretching, and 
stretching is generated by the integrated effect of the rest of the vorticity in the flow. 
We have seen that the regions of highest vorticity have transverse dimensions of the 
order of 7. This is already implicit in Kolmogorov theory and implies that the 
prevailing rate of strain is O(w’). Since we know from the histograms in figure 4 that 
the predominant vorticity is also O(w’), this implies that the Reynolds number of a 
typical dissipative eddy, Re, is O( 1) and independent of Re,,. This is in agreement with 
intuitive stability arguments. 

A small percentage of dissipative eddies (at our Re,,) seem to be strained while 
maintaining a much larger Re,. Large-Reynolds-number vortex sheets are subject to 
inviscid instabilities, and will quickly roll into individual vortices, but columnar 
vortices of circular cross-section are linearly stable, although they are subject to inertial 
waves and will probably break up if perturbed hard enough. There is little doubt that 
a sufficiently high-Reynolds-number vortex will eventually become internally turbulent, 
but it may survive long enough to be observed in rare situations. Note also that the 
evidence suggests that the strong vortices are subject to rates of strain that are much 
weaker than their own vorticity. Under those circumstances, they would behave as 
essentially unstrained and they could only be appreciably perturbed by self-, or mutual, 
interaction. 

We have seen in figure 13 that worms do not become ‘noisier’ with increasing Re,, 
at least within our Reynolds-number range, but it may be that only those rare vortices 
that do not become internally turbulent are recognized as coherent by our tracking 
algorithm. If the mean circulations and radii in table 3 are combined to estimate mean 
axial vorticities for the worms, and if these vorticities are substituted in the histograms 
in figure 4(a), it is found that the volume fraction occupied by the worms decreases 
slowly with Re,. A plausible Re,+ 00 limit is one in which increasingly strong coherent 
structures become increasingly unlikely. 

It might even be possible to shed some light on the scaling law Re, - Re!. The 
relation that comes to mind is 

1 

u‘T/v N Re”, 
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which implies that the velocity increment across an intense worm is of the same order 
as the characteristic velocity of the energy-containing eddies. A simple model is that of 
large eddies straining vorticity at the interfaces in which they meet (see figures 7 and 
8). On most occasions, the vortex sheets generated in that way become unstable and 
break into smaller eddies that strain each other into the O(w’) vorticity background (see 
Moffatt 1989 and Domaradzki 1992 for related models). Occasionally, however, a 
small part of the vortex sheet survives the instability and is strained to thickness 7 while 
still retaining across itself the full velocity difference u’. The eventual roll-up of this 
sheet generates worms. 

Note that this model does not predict the conditions for the formation of worms, but 
that it singles out the observed scaling law as an upper limit for Re,. Note also that it 
suggests that the initial stretching takes the form of sheets, since the velocity increment 
across a stretched sheet is maintained, while that of a cylindrical vortex increases in 
inverse proportion to its diameter. 

Finally, the question of the long lengths of the worms is harder to answer. It is 
inconceivable that a rate of strain O(o‘) remains coherent over a region of space of size 
O(L). Since we know, from the lack of intermittency effects in the moments of the 
velocity distributions, that velocities are only O(u’), the largest possible coherence 
length for a strain w‘ is u’/w’ - A. This suggests that worms are not formed in a single 
stage, but that they grow or coalesce during their lifetimes. Several possible mechanisms 
come to mind, but they are beyond the scope of this paper. 

We have benefited from fruitful discussions with R. Kraichnan and S.-Z. She. We 
are especially indebted to J. Soria for early work in the generation of figure 15. The 
simulations were carried out on the NAS 128-node Intel hypercube, and at the 512- 
node Delta machine at Caltech. This work was initiated as part of the CTR summer 
programme. 

Appendix. Data processing for vortex radii and circulations 
In order to elucidate the geometric structure of the worms, an algorithmic definition 

is needed for the set of points in space which will be taken to constitute a single worm. 
Such definitions necessarily contain some degree of arbitrariness, and the one used here 
is certainly no more than one among many possibilities. 

We are interested in the strong vortical regions, and we take maxima of enstrophy 
as starting points. We define a worm axis and core starting with: 

(i) find the point of maximum enstrophy not yet included in any worm core. This 
is the first worm-axis point of a new worm. 

From that point one could reasonably proceed along the vortex line through the 
point to define a worm centreline. However, an elongated region of high enstrophy, 
which we take intuitively as a worm, does not have vorticity perfectly aligned along its 
axis, nor does a given vortex line necessarily remain within it over its entire length. 
Therefore, to increase the chances of staying within the high-vorticity structure, the 
worm-core definition is taken as : 

(ii) follow the local vorticity vector from the current worm-axis point until it 
intersects the next grid plane, then choose as worm-core points the four grid points in 
this plane that surround the point of intersection. The new worm-axis point is the one 
with the maximum enstrophy. 

This is done in both directions along the vorticity vector, from the first worm-axis 
point until : 
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(iii) the worm ends when the new maximum enstrophy is below the global mean 
value, d2, or when the worm axis intersects its own or another worm's core. 

From the set of worm-axis points we compile radial distributions of axial vorticity 
in the next two steps: 

(iv) define the normal plane around a given worm-axis point as that set of points for 
which the given axis point is the closest point on the worm axis; 

(v) average the component of vorticity parallel to the worm axis (at the given axis 
point) over these radial-plane points. The averaging is done into radial bins of width 
Ax. 

(vi) To compensate somewhat the noise introduced by the discretization of the 
normal plane defined in (iv), the radial distribution is averaged over triples of 
consecutive axial locations, using a (i, i, i) mask. 

With the distributions of axial vorticity as a function of distance from and position 
along the axis, we can compute approximations to the worm radius and circulation as 
functions of axial position. The radial distribution is fitted to a Gaussian shape with 
its maximum the measured value of oo, the axial vorticity at the axis. The l/e radius, 
R, of the distribution is estimated by equating the numerically computed circulation 
inside a small radius, r = 2Ax, to that corresponding to a Gaussian distribution. The 
circulation y at this section is then approximated by integrating the Gaussian, 
assuming axisymmetry : 

y = u,~cR'. 

We have found this procedure to give clearer results than computing the circulation 
directly from the radial distribution. The latter is hampered by the difficulty of 
evaluating the circulation integral over a quite noisy distribution containing vorticity 
from other worms and the background. 

Steps (i)-(vi) are repeated to obtain a database containing a few tens of worms. 
Statistics of radius and circulation are collected over this database. 
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